Homework 2

1. Some properties of $\left(\mathbb{Z}_{p}^{*}, \times\right)$ (25 points). Recall that \mathbb{Z}_{p}^{*} is the set $\{1, \ldots, p-1\}$ and \times is integer multiplication $\bmod p$, where p is a prime. For example, if $p=5$, then 2×3 is 1 . In this problem, we shall prove that $\left(\mathbb{Z}_{p}^{*}, \times\right)$ is a group when p is any prime. The only part missing in the lecture was the proof that every $x \in \mathbb{Z}_{p}^{*}$ has an inverse. We will find the inverse of any element $x \in \mathbb{Z}_{p}^{*}$.
(a) (10 points) Recall $\binom{p}{k}:=\frac{p!}{k!(p-k)!}$. For a prime p, prove that p divides $\binom{p}{k}$, if $k \in$ $\{1,2, \ldots, p-1\}$.
Solution.
(b) (10 points) Recall that $(1+x)^{p}=\sum_{k=0}^{p}\binom{p}{k} x^{k}$. Prove by induction on x that, for any $x \in \mathbb{Z}_{p}^{*}$, we have

$$
\overbrace{x \times x \times \cdots \times x}^{p \text {-times }}=x
$$

Solution.

(c) (5 points) For $x \in \mathbb{Z}_{p}^{*}$, prove that the inverse of $x \in \mathbb{Z}_{p}^{*}$ is given by

$$
\overbrace{x \times x \times \cdots \times x}^{(p-2) \text {-times }}
$$

That is, prove that $x^{p-1}=1 \bmod p$, for any prime p and $x \in \mathbb{Z}_{p}^{*}$.
Solution.
2. Understanding Groups: Part one ($\mathbf{3 0}$ points). Recall that when we defined a group (G, \circ), we stated that there exists an element e such that for all $x \in G$ we have $x \circ e=x$. Note that e is "applied on x from the right." Similarly, for every $x \in G$, we are guaranteed that there exists $\operatorname{inv}(x) \in G$ such that $x \circ \operatorname{inv}(x)=e$. Note that $\operatorname{inv}(x)$ is again "applied to x from the right."
In this problem, however, we shall explore the following questions: (a) Is there an "identity from the left?," and (b) Is there an "inverse from the left?"
We shall formalize and prove these results in this question.
(a) (5 points) Prove that it is impossible that there exists $a, b, c \in G$ such that $a \neq b$ but $a \circ c=b \circ c$.
Solution.
(b) (6 points) Prove that $e \circ x=x$, for all $x \in G$. Solution.
(c) (6 points) Prove that if there exists an element $\alpha \in G$ such that for some $x \in G$, we have $\alpha \circ x=x$, then $\alpha=e$. (Remark: Note that these two steps prove that the "left identity" is identical to the right identity e.)
Solution.
(d) (8 points) Prove that $\operatorname{inv}(x) \circ x=e$. Solution.
(e) (5 points) Prove that if there exists an element $\alpha \in G$ and $x \in G$ such that $\alpha \circ x=e$, then $\alpha=\operatorname{inv}(x)$.
(Remark: Note that these two steps prove that the "left inverse of x " is identical to the right inverse $\operatorname{inv}(x)$.)
Solution.
3. Understanding Groups: Part Two (15 points). In this part, we will prove a crucial property of inverses in groups - they are unique. And finally, using this property, we will prove a result that is crucial to the proof of security of one-time pad over the group (G, \circ).
(a) (9 points) Suppose $a, b \in G$. Let $\operatorname{inv}(a)$ and $\operatorname{inv}(b)$ be the inverses of a and b, respectively (i.e., $a \circ \operatorname{inv}(a)=e$ and $b \circ \operatorname{inv}(b)=e)$. Prove that $\operatorname{inv}(a)=\operatorname{inv}(b)$ if and only if $a=b$.

Solution.

(b) (6 points) Suppose $m \in G$ is a message and $c \in G$ is a cipher text. Prove that there exists a unique $s k \in G$ such that $m \circ \mathrm{sk}=c$.

Solution.

4. Calculating Large Powers mod p (15 points). Recall that we learned the repeated squaring algorithm in class. Calculate the following using this concept

$$
11^{2020^{2020}+2020} \quad(\bmod 101)
$$

(Hint: Note that 101 is a prime number and before applying repeated squaring algorithm try to simplify the problem using what you learned in part C of question 1).
Solution.
5. Practice with Fields (20 points). We shall work over the field $\left(\mathbb{Z}_{5},+, \times\right)$.
(a) (5 points) Addition Table. The (i, j)-th entry in the table is $i+j$. Complete this table. You do not need to fill the black cells because the addition is commutative.

	0	1	2	3	4
0					
1					
2					
3					
4					

Table 1: Addition Table.
(b) (5 points) Multiplication Table. The (i, j)-th entry in the table is $i \times j$. Complete this table.

Table 2: Multiplication Table.
(c) (5 points) Additive and Multiplicative Inverses. Write the additive and multiplicative inverses in the table below.

	0	1	2	3	4
Additive Inverse					
Multiplicative Inverse					

Table 3: Additive and Multiplicative Inverses Table.
(d) (5 points) Division Table. The (i, j)-th entry in the table is i / j. Complete this table.

	1	2	3	4
0				
1				
2				
3				
4				

Table 4: Division Table.
6. Order of an Element in $\left(\mathbb{Z}_{p}^{*}, \times\right)$. (20 points) The order of an element x in the multiplicative group $\left(\mathbb{Z}_{p}^{*}, \times\right)$ is the smallest positive integer h such that $x^{h}=1 \bmod p$. For example, the order of 2 in $\left(\mathbb{Z}_{5}^{*}, \times\right)$ is 4 , and the order of 4 in $\left(\mathbb{Z}_{5}^{*}, \times\right)$ is 2 .
(a) (5 points) What is the order of 5 in $\left(\mathbb{Z}_{11}^{*}, \times\right)$?

Solution.

(b) (10 points) Let x be an element in $\left(\mathbb{Z}_{p}^{*}, \times\right)$ such that $x^{n}=1 \bmod p$ for some positive integer n and let h be the order of x in $\left(\mathbb{Z}_{p}^{*}, \times\right)$. Prove that h divides n.
Solution.
(c) (5 points) Let h be the order of x in $\left(\mathbb{Z}_{p}^{*}, \times\right)$. Prove that h divides $(p-1)$. Solution.
7. Defining Multiplication over \mathbb{Z}_{27}^{*} (25 points). In the class, we had considered the group $\left(\mathbb{Z}_{26},+\right)$ to construct a one-time pad for one alphabet message. Can we define a group with 26 elements using a "multiplication"-like operation? This problem shall assist you to define the $\left(\mathbb{Z}_{27}^{*}, \times\right)$ group that has 26 elements.
The first attempt from class. Recall that in the class, we had seen that the following is also a group.

$$
\left(\mathbb{Z}_{27} \backslash\{0,3,6,9,12,15,18,21,24\}, \times\right)
$$

where \times is integer multiplication $\bmod 27$. However, the set had only 18 elements.
In this problem, we shall define $\left(\mathbb{Z}_{27}^{*}, \times\right)$ in an different manner such that the set has 26 elements.
A new approach. Interpret \mathbb{Z}_{27}^{*} as the set of all triplets $\left(a_{0}, a_{1}, a_{2}\right)$ such that $a_{0}, a_{1}, a_{2} \in \mathbb{Z}_{3}$ and at least one of them is non-zero. Intuitively, you can think of the triplets as the ternary representation of the elements in \mathbb{Z}_{27}^{*}. We interpret the triplet $\left(a_{0}, a_{1}, a_{2}\right)$ as the polynomial $a_{0}+a_{1} X+a_{2} X^{2}$. So, every element in \mathbb{Z}_{27}^{*} has an associated non-zero polynomial of degree at most 2 , and every non-zero polynomial of degree at most 2 has an element in \mathbb{Z}_{27}^{*} associated with it.

The multiplication (\times operator) of the element $\left(a_{0}, a_{1}, a_{2}\right)$ with the element $\left(b_{0}, b_{1}, b_{2}\right)$ is defined as the element corresponding to the polynomial

$$
\left(a_{0}+a_{1} X+a_{2} X^{2}\right) \times\left(b_{0}+b_{1} X+b_{2} X^{2}\right) \quad \bmod 2+2 X+X^{3}
$$

The multiplication (\times operator) of the element $\left(a_{0}, a_{1}, a_{2}\right)$ with the element $\left(b_{0}, b_{1}, b_{2}\right)$ is defined as follows.
Input $\left(a_{0}, a_{1}, a_{2}\right)$ and $\left(b_{0}, b_{1}, b_{2}\right)$.
(a) Define $A(X):=a_{0}+a_{1} X+a_{2} X^{2}$ and $B(X):=b_{0}+b_{1} X+b_{2} X^{2}$
(b) Compute $C(X):=A(X) \times B(X)$ (interpret this step as "multiplication of polynomials with integer coefficients")
(c) Compute $R(X):=C(X) \bmod 2+2 X+X^{3}$ (interpret this as step as taking a remainder where one treats both polynomials as polynomials with integer coefficients). Let $R(X)=r_{0}+r_{1} X+r_{2} X^{2}$
(d) Return $\left(c_{0}, c_{1}, c_{2}\right)=\left(r_{0} \bmod 3, r_{1} \bmod 3, r_{2} \bmod 3\right)$

For example, the multiplication $(0,1,1) \times(1,1,2)$ is computed in the following way.
(a) $A(X)=X+X^{2}$ and $B(X)=1+X+2 X^{2}$.
(b) $C(X)=X+2 X^{2}+3 X^{3}+2 X^{4}$.
(c) $R(X)=-6-9 X-2 X^{2}$.
(d) $\left(c_{0}, c_{1}, c_{2}\right)=(0,0,1)$.

According to this definition of the \times operator, solve the following problems.

- (5 points) Evaluate $(1,0,1) \times(1,1,1)$.

Solution.

- (10 points) Note that $e=(1,0,0)$ is a identity element. Find the inverse of $(0,1,1)$. Solution.
- (10 points) Assume that $\left(\mathbb{Z}_{27}^{*}, \times\right)$ is a group. Find the order of the element $(1,1,0)$. (Recall that, in a group (G, \circ), the order of an element $x \in G$ is the smallest positive integer h such that $\overbrace{x \circ x \circ \cdots \circ x}^{h \text {-times }}=e$)
Solution.

8. Elliptic curve (10 points). In class, we have briefly discussed elliptic curve. Here we will see some concrete examples of elliptic curve on finite prime fields.
(a) (5 points). Let $Y^{2}=X^{3}+X$ be an elliptic curve over the field $\left(F_{23},+, \cdot\right)$. A point (X, Y) lies on the elliptic curve if it satisfies the equation $Y^{2}=X^{3}+X$.
i. (2 points) Verify that the two points $P=(21,6)$ and $Q=(18,10)$ are on the curve. Solution.
ii. (3 points) Find the point R where the line connecting P and Q intersects the elliptic curve $Y^{2}=X^{3}+X$. For $R=(x, y)$, define the "inverse of R " to be the point $S=(x,-y)$. Find the inverse of point R. Recall from the lecture that " $P+Q$ " is defined to be the point $S:=$ "inverse of R."
Solution.
(b) (5 points). Let $Y^{2}=X^{3}+X+7$ be an elliptic curve over the field $\left(F_{17},+, \cdot\right)$.
i. (2 points) Verify that the two points $P=(5,16)$ and $Q=(1,3)$ are on the curve. Solution.
ii. (3 points) Find the point R where the line connecting P and Q intersects the elliptic curve $Y^{2}=X^{3}+X+7$. Find the inverse of point R.
Solution.

Collaborators :

